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Abstract:  This tutorial presents some concepts and 
techniques in nonlinear circuit theory which relate to 
the description of the nonlinear behaviour of high 
frequency field effect transistors and analyses the 
nonlinearity that occurs in circuits in which they are 
embedded.  The concepts are sufficiently simple that 
they provide considerable engineering insight into 
nonlinear device and circuit behaviour and also allow 
hand analysis and design while providing sufficient 
relationship to real devices that practical high 
frequency power and medium signal amplifiers can be 
designed to meet stringent specifications that arise in 
communication systems. 

1. INTRODUCTION 

The need to apply nonlinear circuit theory to the 
solution of problems in the analysis and design of 
analogue circuits has never been greater [1].  The 
introduction of digital communications has not 
eliminated this need since the components operating 
at RF frequencies are necessarily analogue and must 
process carrier signals maintaining well defined 
amplitude and phase characteristics over a range of 
signal levels in order to obtain an acceptably low bit 
error rate.  There is also a need to avoid spectral 
spreading of signals since this would require greater 
channel spacings and less efficient use of the available 
spectrum.  These requirements impose a need for 
amplifiers which have to meet stringent linearity 
specifications and for nonlinear devices such as 
mixers in which the amplitudes of unwanted 
frequency components are strictly limited.  Field 
effect transistors (FETs) used to realise 
communications circuits tend to have short channel 
lengths in order to obtain a high fT (transition 
frequency or bandwidth) and this means that their 
characteristics tend to be quite unlike simple text book 
transistor models.  Models with acceptable accuracy 

tend to be too complicated for hand analysis or design, 
let alone for the development of new circuit synthesis 
techniques required for modern systems.  In this 
tutorial, we attempt to provide a bridge between the 
accurate description or modelling of FETs, some 
aspects of nonlinear circuit theory and the design of 
highly linear amplifiers for communications systems 
applications.  The emphasis will be on presenting 
concepts which are powerful and yet sufficiently 
simple to provide insight and allow hand analysis. 

We will assume the use of active devices which are 
FETs, which may be of any technology (eg Si JFET, 
Si MOSFET, SiGe FET, GaAs MESFET or HEMT, 
InP HEMT).  Most of the nonlinear analysis work will 
be concerned with medium-signal linearity, assuming 
small signal excursions about a bias point.  As we 
shall show, knowledge of medium-signal nonlinearity 
data over a wide range of bias voltages allows large 
signal design to be successfully achieved. The tutorial 
considers the problem for ‘high frequency’ amplifiers 
in the sense that the FETs are operating at frequencies 
where the parasitic device capacitances begin to affect 
linear and nonlinear performance, but the effect of the 
nonlinearity of device parasitic capacitances does not 
have to be considered. 

2. DESCRIPTION OF FET NONLINEARITY 
USING DERIVATIVES 

The symbol we will use 
for a FET is shown in Fig 
1, together with a 
definition of its port 
voltages and currents.  
Our examples will be 
based on use of the 
depletion mode FET (eg 
JFET, MESFET or 
HEMT) although all the 

 
Fig 1 FET Symbol 
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results of this paper are equally applicable to 
enhancement mode FETs (eg MOSFETs).  Typical 
characteristic curves for a FET are shown in Fig 2a, 
where FET drain current Id is plotted against drain 
source voltage Vds for fixed values of gate source 
voltage Vgs.  Two regions can be identified in Fig 2a: 
for Vds > 1 V (saturation region) the curves have a 
small uniform gradient and are widely spaced; for low 
Vds (triode region) they have a highly variable 
gradient and highly variable spacing.  For most linear 
applications, such as amplifiers, FETs are operated in 
the saturation region.  In Fig 2b, we show a plot of Id 
versus Vgs for a fixed value of Vds in the saturation 
region.  If we regard Id as the output variable of the 
FET and Vgs as the input variable, then Fig 2b can be 
regarded as the FET transfer characteristic.  In 
practice the gate of the FET is biased at a DC voltage 
VGS and an AC voltage vgs is superimposed (∴ 
Instantaneous total gate source voltage Vgs = VGS + 
vgs).  If vgs is sufficiently small, then we may say that 

the gain is given by the gradient of the curve in Fig 2b 
at the chosen bias point 

id =
∂Id

∂Vgs
vgs = g1vgs  (1) 

This is a small signal description and g1 is referred to 
as the linear transconductance.  If the signal variation 
vgs is not very small, and we want to represent the 
nonlinear dependence of id on vgs, we can use a power 
series in vgs 

id = g1vgs + g2 vgs
2 + g3vgs

3 + ...  (2) 

This equation can not predict the behaviour of the 
curve in Fig 2b near the threshold voltage (VT = -2 V) 
(this problem will be discussed in section 5) and also 
can not efficiently describe the slight tendency 
towards saturation at high Vgs.  It is therefore only 
suitable for a restricted range of signal variations 
about a bias point.  It is referred to as a medium signal 
nonlinear transconductance description. 

In Fig 2c, we show the information contained in Fig 
2a as a 3-dimensional plot in which Id is now 
represented by a surface.  If a FET is biased in the 
saturation region by defining the gate and drain bias 
voltages VGS and VDS, then id shows a strong 
dependence on vgs but a much weaker dependence on 
vds.  For small signal variations, we may write the 
linearised relationship: 

id =
∂Id

∂Vgs
vgs +

∂Id
∂Vds

vds = g1vgs + gd1vds  (3) 

 
c 

Fig 2(c)  Id versus Vds and Vgs 

 
a 

 
b 

Fig 2  I-V curves for a FET  (a)  Id versus Vds for 
range of values of Vgs  (b)  Id versus Vgs for a specific 
value of Vds 
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This is equivalent to representing a small part of the 
Id surface by a plane.  If we want to represent the 
curvature of the surface at that bias point, we can use 
a power series in vgs and vds to generate a medium 
signal (nonlinear) description [2,3]: 

id = g1vgs + g2 vgs
2 + g3vgs

3 + ...

+gd1vds + gd2vds
2 + gd3vds

3 + ...

+m11vdsvgs + m12vdsvgs
2 + m21vds

2 vgs + ...

 (4) 

The gi coefficients describe the curvature of the 
surface along the vgs axis (transconductance 
nonlinearity) and the gdi coefficients describe the 
curvature of the surface along the vds axis (output 
conductance nonlinearity); the mij coefficients 
describe the variation of the nonlinearity along the vgs 
axis as vds is varied and vice versa (mixing terms).  
(4) is not valid for large signal swings and is a 
medium signal description.  (4) will form the basis of 
our analysis in section 4 of the effect of varying load 
resistance on FET nonlinearity. 

Since in (4), the gi coefficients tend to dominate, the 
approximate form given in (2) which ignores vds 
dependence is often useful.  Successive differentiation 
of id with respect to vgs yields the following: 

did
dvgs

= g1 + 2g2vgs + 3g3vgs
2 + ...    

d2id
dvgs

2 = 2g2 + 6g3vgs + ...    

d3id
dvgs

3 = 6g3 + ...

 (5) 

Since in practice g1 >> g2 >> g3 >>... and we are 
restricted to medium signal amplitudes, the scaled 
coefficients, g1, 2g2, 6g3, ... are in fact close 
approximations to successive derivatives of id with 

respect to vgs and g1, g2, g3, ... are therefore often 
referred to as derivatives.  By assuming that the gate 
source port of a FET is excited by a sine wave, it may 
be shown, using (2) and (5), that the i’th derivative 
determines the magnitude of the i’th harmonic 
component.  Since high frequency amplifiers tend to 
be narrow band, harmonic distortion is of little 
significance.  In this case the i’th derivative 
determines the magnitude of the i’th intermodulation 
distortion component. 

Techniques have been proposed for measuring the 
coefficients in (4) [4,5].  However, it is the 
transconductance derivatives (in (2)) which are largest 
and most significant and we show in Fig 3 a simple 
test set-up to measure these derivatives.  Two signal 
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Fig 4  Typical form of transconductance derivatives for 
a FET (a) linear-linear scales  (b) log-log scales 

 
Fig 3  Block diagram of test set up for measurement 
of FET transconductance derivatives 
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sources generate sinewaves of frequencies f1 and f2 
which are combined and fed to the gate source port of 
the FET under test.  The drain is connected to a load 
resistor and a spectrum analyser which measures the 
amplitude of the signals at f1 (g1), f2 - f1 (g2) and 2f1 - 
f2 (g3).  It is important that residual signals generated 
in the combiner at the test frequencies f2 - f1 and 2f1 - 
f2 are negligible and a filter is provided to remove 
these components.  The magnitudes of g1, g2 and g3 
are typically measured for a range of gate and drain 
bias voltages, but it is the variation with Vgs which is 
greater and of most interest.  Fig 4a shows a typical 
plot of g1, g2 and g3 for a GaAs MESFET.  This 
general form of the curves has been observed in a 
range of FETs including JFETs, MOSFETs and 
MESFETs.  HEMTs, to be discussed in section 6,  
have a slightly different form of curves due to their 
mode of operation.  The form of the curves in Fig 4a 
can be easily explained since they are derivatives of 
the drain current curve, eg Fig 2b.  As the gate source 
voltage is increased from the threshold voltage, Id 
increases rapidly and then less rapidly for high Vgs.  
Since g1 (transconductance) in Fig 4a is the derivative 
of Id, it starts from zero, reaches a maximum gradient 
at around Vgs = -1.8 V and the gradient then reduces.  
g2, the next derivative, must start from zero, reach a 
peak where g1 has a maximum gradient and then fall.  
Finally g3 reaches a positive peak, then falls to zero 
(where g2 has its peak and g1 its maximum gradient) 
and then exhibits a negative peak and decays to zero. 
Fig 4b shows the graph of Fig 4a but using 
logarithmic scales.  It can be seen that the zero in g3 
has become a notch. Such curves, will form the basis 
of our linear circuit synthesis technique to be 
discussed in section 6. 

2nd order distortion (ie g2) is generally of little 
concern in narrowband communication systems 
because the frequency products which it generates 
(sum, difference and harmonic frequencies) are far 
removed from the carrier frequencies and are out of 
band. Although in general |g3| << |g2|, 3rd order 
distortion is much more serious because it generates 
intermodulation products which are close to the 
carrier frequencies. 

The derivatives in Fig 4 are for medium signal 
variations about an operating point and are plotted 
against gate bias voltage Vgs.  Since Vgs can represent 

a bias voltage plus signal variation (Vgs = VGS + vgs), 
Fig 4 shows us approximately how the derivatives 
vary over the instantaneous voltage values of a large 
signal.  Since g3 varies with Vgs, the effective g3 for a 
large signal will be some kind of average of g3 over 
the range covered by the instantaneous Vgs values.  If 
a signal traverses parts of the g3 derivative which have 
opposite signs, then cancellation can occur, as will be 
exploited in the latter part of section 6. 

The derivatives in Fig 4 are measured for a constant 
value of Vds.  In practice, a FET will drive a load 
which will cause Vds to vary with the signal and in 
many cases will be driving a resistive load which 
means that Vds will be an inverted magnified version 
of Vgs.  This corresponds to movement along a 
resistive load line of gradient -1/RL in Fig 2a.  It is 
possible, in the measurement set up in Fig 3 to control 
Vds and Vgs together to plot the derivatives along a 
load line in order to provide derivatives which can 
provide large signal distortion information for the 
resistive load case. 

The concept of derivatives which can describe the 
nonlinearity of a device has been developed from the 
FET I-V curves in Fig 2c.  High frequency FETs tend 
to suffer from frequency dispersion which causes the 
I-V curves measured at DC to differ from those 
measured using high frequency pulsed methods [6,7].  
The method given for measuring derivatives does not 
use the I-V curves, but if we try to relate I-V curves to 
measured derivatives, this will only be valid if the I-V 
curves are measured under pulsed conditions.  

The material in this section has been concerned with 
FET transconductance and output conductance 
nonlinearity which are frequency independent.  In 
practice FETs have terminal capacitances.  In the next 
section we consider this aspect of FET performance. 

3. DEVICE-CIRCUIT INTERACTION AND 
FREQUENCY DEPENDENT DISTORTION 

In a real device, the transconductance and output 
conductance nonlinearity we have described above 
may be considered to derive from the core of the 
device, the channel region under the gate.  This region 
also gives rise to a distributed capacitance between 
the channel and the gate which is usually partitioned 
into gate-source and gate-drain capacitances.  For a 
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given bias point, these capacitances consist of a linear 
(constant) capacitance in parallel with voltage 
dependent (nonlinear) capacitances.  The linear 
capacitance (mainly the gate-source capacitance Cgs) 
determines the fT or bandwidth of the FET.  In this 
section we investigate a very important phenomenon 
called frequency-dependent distortion which is due to 
the interaction between the linear FET capacitance Cgs 
and the transconductance nonlinearity of the FET.  It 
is the linear part of the device capacitance which most 
affects high frequency distortion, and we may lump 
the linear capacitances together with the linear 
elements of the circuit in which the FET is embedded, 
such as source and load impedances, feedback 
impedances, and consider the general interaction 

between a device (nonlinear transconductance) and 
linear circuit elements, which we call device-circuit 
interaction [3,8].   

We begin our study of device-circuit interaction by 
considering some simple example circuits with 
passive elements.  Consider the circuit in Fig 5a which 
contains a linear resistance R and a nonlinear 
conductance described as follows: 

i = g1v + g2v2  (6) 

where 3rd and higher order terms are neglected.  
Volterra analysis may be used to calculate the 
harmonics in the output voltage v and these are 
tabulated in Table 1 and plotted against the resistance 
R in Fig 5b.  The first thing to notice is that 3rd 
harmonic exists even though the nonlinear 
conductance in (6) has g3 = 0.  The reason for this is 
that the 2nd harmonic in the current i due to g2 
flowing through R causes a 2nd harmonic component 
in v which is mixed with the fundamental by g2 to 
cause a 3rd harmonic component in the current.   

This is the simplest form of device circuit interaction 
and the form of the curves in Fig 5b can be seen in 
many situations. If the resistor R in Fig 5a is replaced 
by a capacitor then similar curves are obtained but the 
horizontal scale becomes 1/frequency.  This is the 
simplest manifestation of frequency dependent 
distortion, in which, at the fT frequency, the 
fundamental rolls off and the harmonic amplitudes 
reach a peak.   

We now consider some basic FET circuits in which 
frequency dependent distortion occurs.  Fig 6a shows 
a FET in common-gate configuration excited by a 
sinusoidal current  at the source terminal.  The 
admittance Y is given by Y = G + jωCgs, where G is 
the self conductance of the current source and Cgs is 
the FET gate-source capacitance which defines its fT.  
Assuming that the FET can be described by (6), the 
distortion in the drain current i as a function of Re(Y) 
and Im(Y) is plotted in Fig 7.  We can consider the 
Im(Y) axis as the frequency axis and note that at the fT 
frequency (Im(Y) = 1), the fundamental component 
begins to fall and both the 2nd and 3rd order 
distortion have significant peaks.  For a real FET, g3 ≠ 
0 and hence the 3rd harmonic in Fig 7 would approach 
a constant level as Y → 0 dependent on the value of 

 
a 

 
b 

Fig 5  Example of device-circuit interaction (a) circuit 
(b) computed harmonics 

Table 1  Expressions for harmonics for simple example 
circuit 

Component Amplitude Phase 
Fundamental 1

1 + g1R
 0 

2nd 
Harmonic 

1
2

g2 R

1+ g1R( )3 Vin  ππππ/2 

3rd 
Harmonic 

1
2

g2R( )2

1+ g1R( )5 Vin
3  

ππππ 
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g3.  Nevertheless, the 3rd order frequency dependent 
distortion due to g2 and Cgs will usually dominate the 
3rd order distortion due to g3 at frequencies 
approaching fT.   

The generation of 3rd harmonic by means of Cgs and 
g2 in the common-gate FET of Fig 6a can be 
understood qualitatively as follows.  Initially, we 
assume that Y is small.  The sinusoidal current flows 

into the source and out of the drain, ie there is no 
distortion.  But due to the FET characteristic in (6), 
the gate-source voltage v is given by the inverse of the 
characteristic in (6) which contains all harmonic 
components.  As Y increases, then the nonlinear 
voltage v causes increasing nonlinear currents to flow 
in Y.  By Kirchoff’s current law, these nonlinear 
currents must also exist at the drain.  Hence as 
frequency increases, all harmonic components at the 
drain increase in amplitude until Y is so large that the 
fundamental is diverted into Y and all harmonic 
components then start to decrease, as shown in Fig 7. 

For comparison with the common-gate FET, Fig 6b 
shows a FET in common-source configuration excited 
by a sinusoidal voltage. In this case, the source is 
applied to the gate-source port of the FET via the 
source resistance and Cgs, the effect of which will be 
to linearly filter the signal before applying it to the 
gate-source port.  Hence drain current will be 
determined only by the FET transconductance 
nonlinearity and there is no device circuit interaction 
or frequency dependent distortion apart from 
reduction of the fundamental and all frequency 
components around the fT frequency.  Thus the 
common-source FET will not exhibit the frequency 
dependent 3rd order distortion peaking due to Cgs and 
g2 interaction and therefore distortion at high 
frequencies will be at a much lower level dependent 
on g3. 

Fig 6c shows a cascode FET pair which is a frequently 
used circuit configuration.  Since the input signal is 
applied directly to the gate-source port of the lower 
FET, its drain current i1 will be determined by its 
transconductance nonlinearity and will not exhibit 
frequency dependent distortion.  However, when this 
current flows into the upper FET, harmonic 
components of the current will flow into its gate-
source capacitance as frequency approaches fT and 
these nonlinear currents will appear in the output 
current i2.  Hence the cascode FET pair will exhibit 
significant frequency dependent distortion. 

If we ground the drain of the common-gate FET in Fig 
6a, the FET becomes a 2-terminal device and may be 
interchanged with the current source as in Fig 6d.  The 
current i in this circuit suffers from the same 
frequency-dependent distortion as does the circuit in 

      
 a b c 

       
 d e 

Fig 6 Simple FET circuits  (a) common- gate FET  (b) 
common- source FET (c) cascode FET amplifier  (d) 
common-gate FET -to- current mirror conversion  (e) 
practical common-source amplifier 

 
Fig 7  Harmonic distortion in the output current of the 
common-gate FET as a function of Re(Y) and Im(Y) 
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Fig 6a.  When we add the 2nd FET M2 in Fig 6c, we 
recognise the current mirror circuit.  The frequency 
dependent distortion in i, is mirrored in the output 
current io .  Thus the current mirror circuit suffers 
from the same problem of frequency dependent 
distortion as the common-gate FET, which has been 
plotted in Fig 7.  A novel current mirror circuit which 
overcomes this problem has been proposed in [9]. 

Fig 6e shows the common-source FET of Fig 6b but 
with the addition of resistance Rs which can represent 
the sum of the parasitic source resistance of the FET 
and any source degeneration resistance included in 
the circuit.  If Rs = 0, then the circuit reduces to that 
in Fig 6b and there is no device circuit interaction 
and no frequency dependent distortion.  If Rs ≠ 0,  the 
situation changes.  The harmonics in the drain current 
i flow through Rs and cause voltage harmonics which 
act in series with the input source to determine the 
FET gate-source voltage.  It has been shown that 
distortion rises with Rs and has some frequency 
dependence due to Cgs.  If Rs is minimised to the 
parasitic resistance of the FET, this effect is not 
serious and frequency dependent distortion is 
practically negligible in this circuit. 

From the results in this section, we conclude the 
following:- 

•= Frequency dependent distortion is insignificant in 
the common-source amplifier and it is a 
recommended choice for high frequency 
amplifier design.  It may be important to consider 
the effect of feedback, particularly, source 
degeneration resistance, on distortion 
performance. 

•= The common-gate FET, the cascode FET, the 
current mirror and the common-source FET with 
significant feedback all manifest device-circuit 
interaction (between Cgs and g2) which appears as 
frequency dependent distortion peaking at around 
the device fT.  Such circuit configurations are not 
recommended for use in high frequency linear 
circuit designs unless they are carefully analysed 
and distortion compensation is considered. 

•= For situations where the distortion perf-ormance 
of the common-source FET is not acceptable, this 

may be improved and suitable techniques will be 
discussed in Section 6. 

4. COMMON-SOURCE FET AMPLIFIER 
DISTORTION ANALYSIS 

In section 3, we simplified the FET distortion analysis 
by making a number of assumptions, including the 
assumption of zero FET output conductance (ie 
assuming no dependence of id on vds) and the 
assumption of a simple FET transconductance model 
up to 2nd order (ie g3 = 0).  However,  the analysis did 
serve to indicate that we should restrict ourselves to 
the common-source FET to avoid severe frequency 
dependent distortion. Having made this decision, we 
now develop a simple technique to predict the 
nonlinearity of a common-source FET amplifier where 
we do not ignore output conductance and higher order 

 
Fig 8  Common-source amplifier circuit 

a

      

b

     
Fig 9  2nd order distortion scenarios for common-
source FET amplifier 
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transconductance nonlinearity [3].  We assume that 
the FET is connected in a circuit defining gate and 
drain bias as shown in Fig 8 with a load resistance RL 
and we assume that we are working at a frequency up 
to say fT/5 where nonlinear behaviour is still 
dominated by FET transconductance and output 
conductance nonlinearity.  The analysis technique will 
make use of the FET derivatives introduced in section 
2. 

If the FET in Fig 8 is operated at well defined gate 
and drain bias voltages, it may be described by the 
medium signal nonlinear description obtained 
previously in (4).  For the circuit in Fig 8, the output 
voltage is given by  

vds = −id RL  (7) 

id contains all the terms given in (4), some of which 
depend on Vgs and some on Vds, forming a recurrence 
relationship.  However, we may take the dominant 
term in id, namely id ≈ g1vgs in order to determine vds 
using (7).  Hence we obtain vds ≈ -g1RLvgs., which we 
may write  

vds = Avgs  (8) 

where A is a parameter related to voltage gain.  
Substituting (8) into (4) and rearranging, we obtain 

id = g1vgs + g2 vgs2 + g3vgs3 + ...

+gd1Avgs + gd2 A2vgs
2 + gd3 A3vgs

3 + ...

+m11Avgs
2 + m12Avgs

3 + m21A2vgs
3 + ...

= g1 + gd1A( )vgs

+ g2 + m11A + gd2 A2( )vgs
2

+ g3 + m12A + m21A2 + gd3A3( )vgs
3 + ...

 (9) 

where the terms responsible for 2nd and 3rd order 
distortion have been grouped together.  First we 
consider 2nd order distortion (terms in vgs

2).  For a 
real FET, the effect of m11 is small.  The effect of the 
remaining terms g2 and gd2 depends on their relative 

signs.  We may plot the 2nd order distortion terms 
against A using a log-log scale.  The g2 term has a 
gradient of zero and the gd2 term has a gradient of 2.   
Hence the lines corresponding to the individual terms 
will cross, as shown in Fig 9.  If g2 and gd2 have the 
same sign, then the resultant will move smoothly 
between the two lines (Fig 9a).  If on the other hand 
they have opposite signs, then 2nd order distortion 
will show a sharp null with A (Fig 9b). 

The 3rd order distortion mechanism is somewhat more 
complicated.  For a typical FET, g3, m12 and m21 are 
the most significant terms.  g3 and m21 have gradients 
of 0 and 2 and tend to have the same sign leading to 
an envelope which moves smoothly between the two 
(Fig 10a).  The term m12 has a gradient of 1 and an 
opposite sign and different scenarios are possible 
depending on the magnitude of m12.  If m12 does not 
cross the resultant (Fig 10a), then the overall resultant 
has a broad shallow null.  If it just touches the 
resultant, then there is a broad deep null (Fig 10b).  If 
m12 crosses the resultant, then there are two deep 
narrower nulls (Fig 10c).  Thus a wide variety of 
behaviour is possible depending on the magnitude of 
the coefficients.   

In Fig 11 we show the measured distortion versus load 
resistance (ie gain) for a typical GaAs MESFET in 
common-source configuration [10].  It can be seen 
that the 2nd order distortion exhibits a deep null, 
manifesting the behaviour shown in Fig 9b and that 
the 3rd order distortion shows a shallow null 
according to the behaviour shown in Fig 10a.  In Fig 
12, we show simulations of the distortion of this 
amplifier using a number of standard FET models.  It 
can be seen that the models vary widely in their 
predictions showing all behaviours characterised in 
Figs 9 and 10 (shallow null, single null and double 
null).  Only the Parker Skellern model [11] comes 
close to predicting the actual measured behaviour in 
Fig 11. 
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This exercise teaches us a number of important 
lessons.  The first is the over-riding importance of 

derivatives.  If accurate derivatives are known for a 
FET at a given bias point, dependence of distortion on 
load resistance can easily be predicted as we have 
shown.  Secondly, the success a model achieves in 
accurate prediction of distortion depends on the 
accuracy of its implied derivatives at the chosen bias 
point.  Distortion is a very sensitive function of the 
derivative magnitudes and signs, as we have seen, and 
even small errors in implied derivatives can lead to 
totally erroneous distortion prediction.  In extreme 
cases, it may be better not to use a FET model at all, 
but instead measure the derivatives of the FET and 
use them as a basis for design and simulation.  Finally, 
the Parker Skellern model tends to give good 
predictions of the form of the derivatives with bias 
and reasonable predictions of their magnitudes in 
most cases and is therefore recommended for 
nonlinear simulation work. 

5. SIMPLE FET MODELS WITH REALISTIC 
DERIVATIVES USING THE SOFT PINCH-OFF 

FUNCTION 

We have concluded that only very accurate and hence 
complex FET models, such as the Parker Skellern 
model,  can provide accurate prediction of nonlinear 
behaviour over the full range of bias points and load 
conditions.  In this section, we show that, provided 
that certain restrictions are accepted and certain 
principles are applied, it is possible to use surprisingly 
simple models to give surprisingly good results. The 
importance of this is that it makes hand analysis 
possible and therefore facilitates the initial stages of 
nonlinear circuit design and also could allow the 
development of circuit synthesis techniques to meet 
linear, or nonlinear,  requirements.   

We begin with the simplest large signal model for the 
saturation region known as the square law model 

Id = β Vgs − VT( )2  (10) 

where β is the transconductance factor and vT is the 
threshold voltage. For simplicity, we neglect output 
conductance, ie dependence of Id on Vds.  Id is shown 
plotted against Vgs in Fig 13a for VT = -2 V and β = 1 
AV-2.  We also show in Fig 13a, the first, second and 
third derivative of Id with respect to Vgs, with scaling 
factors of 1, 1/2 and 1/6, as in (5), to yield the 

a

      

b

         

c     

  
Fig 10  3rd order distortion scenarios for common-
source FET amplifier 

 
Fig 11  Measured distortion versus RL for a common-
source FET amplifier 

 
Fig 12  Simulated distortion of common-source FET 
amplifier using various FET models 
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coefficients g1, g2 and g3 in (2),.  These derivatives 
can be compared with those for a real FET shown in 
Fig 4a, and it can be seen that the derivatives in Fig 
13a are totally unrealistic;  g1 is predicted to be a 
linear function, g2 a constant and g3 = 0, implying that 
the FET has no 3rd order distortion.  Another problem 
is that below the threshold voltage (VT = -2 V), the 
drain current rises and g1 continues its linear descent, 
becoming negative.  The non-physical behaviour of ID 
and g1 for Vgs < VT can be overcome by introducing a 
switching function. 

Id = β Vgs − VT( )2    for   Vgs ≥ VT
Id = 0   for   Vgs < VT

 (11) 

Id and the derivatives for this case are shown plotted 
in Fig 13b.  Although Id and the derivatives are now 
zero for Vgs < VT, the effect has been to introduce a 
gradient discontinuity in g1, a step discontinuity in g2 

and a spike discontinuity in g3.  Since (11) is not 
differentiable, the height of the spike discontinuity in 
g3 depends on the step size used in the numerical 
differentiation.  Also, the form of the derivatives for 
Vgs > VT is the same as in Fig 13a and therefore an 
equally bad match to the real derivatives in Fig 4a. So 
the idea of a switching function, as implemented in 
(11) is not helpful. 

The region of the FET characteristic curves for which 
Vgs < VT where Id is close to zero is called the pinch-
off region, since the depletion region under the FET 
gate is filling the whole channel region preventing any 
current flow.  In the pinch-off region the current of a 
real device is not zero but only very small and 
measurements can be made to show that they follow 
an exponential dependence on Vgs.  Thus in a real 
device, the transition between normal conduction and 
pinch-off is not sudden, as implemented in the 
switching function in (11), but smooth and gradual.  
This gradual pinch-off, or soft pinch-off, can be 
implemented using the soft pinch-off function (which 
is part of the Parker Skellern FET model [11]) 

Vgs
' − VT = VST ln e

Vgs −VT( )VST +1
�
�� �� (12) 

Vgs is the gate source voltage of the FET and Vgs’ 
replaces Vgs in (10).  Equation (12) is plotted in Fig 
14.  It can be seen that, when Vgs - VT > 0, Vgs’ - VT 
follows Vgs - VT closely.  However, when Vgs - VT < 0, 
then Vgs’ - VT converges smoothly to zero.  The 
parameter VST determines the softness of the soft 
pinch-off effect; for a FET a typical value is 0.07.  
Unlike the switching function in (11) the soft pinch-
off function in (12) is differentiable. 

In Fig 15a, we show a plot of Id and the derivatives for 
the square law model of (10) with Vgs replaced by Vgs’ 
and Vgs’ determined by the soft pinch-off expression 
of (12).  It can be seen that as for the real device, Id 
and all the derivatives now fall to zero around the 
threshold voltage.  Comparison with the derivatives of 
the real device in Fig 4a shows that the model 
derivatives are now much more realistic.  g2 now has a 
slight peak and g3 becomes negative, although these 
effects are less pronounced than for the real device. 

 
a 

 
b 

Fig 13  Plots of ID, g1, g2 and g3 versus VGS for various 
FET models (a) square law  (b) truncated square law   
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The final stage in this study of simple models is to 
replace the power of 2 in (10) by a general parameter 
Q 

Id = β Vgs
' − VT( )Q  (13) 

In Fig 15b, we show a plot of Id and the derivatives for 
the model of (13) with Q = 1.7 and Vgs’ determined by 
the soft pinch-off expression of (12).  It can be seen 
that the effect of changing Q from 2 to 1.7 has been to 
emphasise the peak in g2 and hence increase the 
negative peak in g3 to the point where the derivatives 
in Fig 15b are a good match to the derivatives of the 
real device in Fig 4a.  Since (12) is differentiable, 
these model derivatives are relatively insensitive to 
the step size used in the numerical differentiation. 

In this section, we have identified some key principles 
of nonlinear FET modelling:- 
•= Although a device is not normally used in the 

pinch-off region, modelling of the pinch-off 

region affects nonlinear behaviour significantly in 
the normal conduction region and it is vital to 
implement a realistic soft-pinch-off using an 
expression such as (12). 

•= The square law model is usually not accurate and 
a power value other than 2 will be necessary, 
especially for high frequency short-channel FETs.   

We have ignored dependence of Id on Vds, ie we have 
assumed that FET output conductance is zero.  This is 
generally a reasonable assumption for the initial 
design of a circuit because the transconductance 
derivatives play the major role in determining 
distortion behaviour.  If desired, non-zero FET output 
conductance can be taken into account to a first order 
approximation by replacing Vgs in (12) by Vgs + γVds. 

The model we have developed in (13) and (12) is 
sufficiently simple that it can be used for hand 
analysis of circuits. For demanding design situations 
where the distortion of the common-source FET is too 
high the model could make it possible to synthesise 
new circuits or design techniques with reduced 
distortion.  One example of such a design technique is 
derivative superposition, and we consider this 
approach in the next section. 

6. IMPROVING THE LINEARITY OF THE 
COMMON-SOURCE FET USING DERIVATIVE 

SUPERPOSITION 

We have seen that, as an architecture for high 
frequency linear amplifiers, the common-source 
amplifier is attractive because significant frequency 
dependent distortion does not occur and the distortion 
behaviour up to high frequencies is governed by the 
FET derivatives.  For some applications, where very 
low levels of distortion are specified or where large 
signal levels have to be used, as in a power amplifier, 
the distortion produced by the common-source FET 
may be too high and design techniques are required to 
reduce it.  Derivative superposition is one such 
technique and will be described in this section.  In 
most communications applications, the 3rd order 
distortion is much more of a problem than 2nd order 
distortion because 2nd order distortion has the effect 
of introducing additional frequency components far 
removed from the carriers and therefore out side the 
system bandwidth.  3rd order distortion, on the other 

 
Fig 14  Plot of soft pinch-off function 

 
a 

 
b 

Fig 15 Plots of ID, g1, g2 and g3 versus Vgs for FET 
models with soft pinch-off (a) square law (b) Q = 1.7 
law 
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hand, causes distortion components close to the 
carriers making filtering impossible.  Thus a very 
important need is to find a way to reduce the 3rd order 
distortion of the common-source FET amplifier. 

Consider the 3rd order derivative (g3) for a typical 
MESFET shown plotted in Fig 4a.  The form of the 
curve has a positive peak followed by a zero and then 
a negative peak.  Derivative superposition, in its most 
general sense involves taking a number of such 
derivative curves, shifting them along the Vgs axis by 
arbitrary amounts and applying scaling to the 
amplitude of the derivatives in order that the 
composite derivative obtained by adding or 
superimposing the derivatives meets some linearity 
(or nonlinearity) requirement [12].  In the most 
common applications, we start with a main device 
(say the one having the derivative structure in Fig 4a) 
and add a 2nd set of derivatives shifted and scaled so 
that the positive peak of one g3 derivative lies on top 
of the negative region of the original g3 derivative, 
causing a cancellation of the derivative.  Several 
curves may be added to obtain low g3 over a wide 
range of Vgs, ie for a range of small and large signal 
levels.   

A generic circuit structure for a derivative 
superposition (DS) amplifier is shown in Fig 16.  A 
number of common-source FETs share the same RF 
input signal VRF and overall bias VGS applied to their 
gates but each FET has a separate gate bias offset 
VOFFSETi which effectively shifts its derivatives along 
the Vgs axis as required.  Each FET has a specified 
gate width, to scale the amplitude of its derivatives 
appropriately, and therefore the technique is most 

appropriate for integrated circuit implementation.  The 
drain currents are added to form the overall output 
signal. This addition of the FET output currents 
implies addition of their individual derivatives to 
obtain an overall set of derivatives for the composite 
device.  The output summing may be by direct 
connection, by use of a tapped transmission line, a 
hybrid transformer or any other suitable method.  
Since all the FETs are in common-source 
configuration, frequency dependent distortion is not a 
problem.   

We shall briefly consider two examples of DS 
amplifiers.  The first circuit consists of 4 nominally 
identical discrete HEMTs on a printed circuit with 
their drains connected to the output via attenuators to 
represent device width scaling [12].  The gates are 
connected to the common signal source via capacitors 
and to their respective bias voltages via resistors. The 
starting point was to measure the derivatives of one of 
the discrete HEMTs alone and the result is shown in 
Fig 17 (white symbols).  Comparison with Fig 4b 
shows that the derivatives for the HEMT are more 
complex than those for the MESFET since, for high 
Vgs, g1 falls, causing a null in g2 and two nulls in g3.  
Using these measured derivatives, offset voltages and 
scaling factors for the 4 HEMTs of the DS amplifier 
were chosen in order to obtain a low combined value 
for g3 over a range of Vgs values.  The measured 
derivatives for the 4-HEMT DS amplifier are also 
shown in Fig 17 (black symbols).  It can be seen that it 
has been possible to obtain a significant reduction in 
3rd order distortion for gate voltages between about -
0.3 and 0 V.  Notice that since the 2nd order 
derivative is always positive this form of derivative 
superposition tends to increase 2nd order distortion, 
but this is usually not a problem because its effects are 
out of band.  Notice that the superposition operation 
has significantly increased the fundamental.  If the DS 
amplifier is biased in the centre of the low distortion 
range, about VGS = - 0.15 V, then for small signal 
amplitudes (small excursions about the bias point), the 
benefits of the low distortion design will be obtained.  
However, as the amplitude of the input signal is 
increased, the part of the derivative beyond the low 
distortion region will start to come into play and 
distortion will increase.  This can be observed in Fig 
18 where we have compared distortion against signal 

 
Fig 16  Derivative superposition amplifier architecture 
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level for the DS amplifier and for the single HEMT.  
This shows clearly the considerable improvement at 
low and medium signal levels being eroded as the 
signal level is increased towards the compression 
point.  This approach is fine for small and medium 
signal amplifiers but is not very attractive for power 
amplifiers because power amplifiers have to be 
operated with large signal levels close to compression 

to obtain reasonable efficiency and it is at these high 
power levels that low distortion is needed.  To meet 
such a requirement would need many devices and 
would represent very inefficient use of the large total 
gate width. 

In order to meet the need for power amplifiers with 
low 3rd order distortion at high power levels, an 
alternative form of derivative superposition has been 
developed [13].  Rather that reducing the amplitude of 
the overall 3rd order derivative around the bias point, 
as illustrated in Fig 17, in the alternative technique the 
aim is not to reduce the amplitude of the derivative 
but to introduce 180o phase shifts in the derivative 
each side of the bias point.  The way in which this 
works in the derivative domain is illustrated in Fig 19.  
In this case there are just two devices, a main device 
(M1) and an auxiliary device (M2).  The auxiliary 
device has a greater width than the main device and 
this causes a change in sign of the overall derivative 
(labelled DS) at the quiescent point of Vgs = -0.75 V 
and 180o sign changes each side, shown by nulls in the 
DS curve around Vgs = -0.5 V and -1 V.  As the 
signal level is increased, the derivative will change 
sign for parts of the cycle as the peaks traverse the 
curves beyond the sign changes. It is possible to 
design the circuit so that a net zero g3 derivative is 
obtained for a specified large signal level.  Measured 
results for a MMIC chip are shown in Fig 20 where 
we have plotted carrier-to-interference ratio (C/I) 
against input power for the DS amplifier and for a 
single device biased at different quiescent points, 
corresponding to operation in classes A, AB and B.  

 
Fig 17  Comparison of measured derivatives g1, g2 and 
g3 for a 4-HEMT DS amplifier and for a single HEMT 

 
Fig 18  Comparison of fundamental and 2nd and 3rd 
order intermodulation distortion against input power 
for 4-HEMT DS amplifier and single HEMT 

 
Fig 19  3rd order derivatives for phase reversal form 
of derivative superposition 
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The peak in C/I for the DS amplifier at an output 
power of 10 dBm corresponds to the null in 3rd order 
distortion caused by the phase reversal technique.  It 
was shown that the DS amplifier provides the best 
compromise between distortion and efficiency 
compared to all the single FET modes considered at 
the cost of an increase in total gate width.  In many 
communications system scenarios, a combination of 
high efficiency and low distortion is a very attractive 
design option. 

7. CONCLUSIONS 

The authors have presented some concepts which have 
been found to be useful for the nonlinear analysis and 
design of FET circuits.  The techniques are 
sufficiently realistic that they allow the design of 
circuits needed for today’s and future communication 
systems, providing for example potentially attractive 
solutions to specifications on high linearity and high 
efficiency for power amplifiers.  On the other hand, 
the techniques are sufficiently simple that they 
provide considerable engineering insight to problems 
in linear and nonlinear circuits and, in many cases, 
allow hand calculations to be performed.  The 
possibility of hand calculations is important for two 
reasons.  Firstly, in the early stages of the circuit 
design process, specifications on nonlinearity can be 
included at the outset and designed for, rather than 
adopting a trial and error approach.  Secondly, the 
availability of simple expressions providing a realistic 
description of the nonlinearity of high frequency FETs 
could potentially lead to the development of new 

formal synthesis techniques for circuit design taking 
nonlinearity into account.   
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